

VOLUME 16, NUMBER 9

MAY 4, 2004

© Copyright 2004 by the American Chemical Society

Communications

Porous Single-Crystalline TaON and Ta₃N₅ Particles

Daling Lu,[†] Go Hitoki,[‡] Emi Katou,[‡] Junko N. Kondo,[‡] Michikazu Hara,[‡] and Kazunari Domen^{*,†,‡}

Core Research for Evolutional Science and Technology Program, Japan Science and Technology, 2-1-13, Higashiueno, Taito-ku, Tokyo, 110-0015 Japan, and Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan

> Received August 25, 2003 Revised Manuscript Received January 28, 2004

Nitrides have attracted considerable attention in many fields. Recently, the present authors have reported a tantalum oxynitride, TaON, and a tantalum nitride, Ta₃N₅, as visible light-responsive photocatalysts.^{1–3} These photocatalysts exhibit a high quantum efficiency (QE) for water oxidation into O₂ under visiblelight irradiation, up to 34% and 10% for TaON and Ta_3N_5 , respectively. As nitrides are known to typically contain significant amounts of defects in the crystal structure, which would seem to be an undesirable property for electronic and photoelectronic applications, the high QE for oxidation of water by TaON and Ta₃N₅ photocatalysts is unexpected. Further detailed study of the TaON and Ta₃N₅ structures is therefore warranted.

Although there have been a few reports on TaON⁴⁻⁷ and $Ta_3N_5^{5,6,8}$ synthesized from Ta_2O_5 powder in an ammonia atmosphere, the crystal habits of these materials have vet to be examined in detail. In this study. TaON and Ta_3N_5 particles prepared by nitriding Ta_2O_5 powder (99.9%, rare metallic) under a flow of NH₃ (flow rate of 20 mL/min for TaON and 1 L/min for Ta₃N₅) at 1123 K for 15 h were investigated by X-ray powder diffraction (RINT 2000/PC, Rigaku Corporation) and high-resolution field emission transmission electron microscopy (JEM-2010F, JEOL, 200 kV).

Figure 1 shows the schematic structures of Ta₂O₅, TaON, and Ta_3N_5 . Ta_2O_5 has an orthorhombic structure (a = 43.997 Å, b = 3.894 Å, c = 6.209 Å), while TaON assumes a monoclinic structure (a = 4.968 Å, b = 5.037Å, c = 5.185 Å, $\beta = 99.560^\circ$) similar to baddeleyite (ZrO_2) .⁹ The structure of Ta₃N₅ is orthorhombic (*a* = 3.8862 Å, *b* = 10.2118 Å, *c* = 10.2624 Å) and consists of TaN_6 octahedra, with a structure similar to that of anisovite (Ti_3O_5) .¹⁰ In the present synthesis, Ta_2O_5 nitrided under a flow of 20 mL/min ammonia for 15 h was revealed by X-ray diffraction (XRD) to form TaON, whereas preparation under 1 L/min ammonia for the same period produced Ta_3N_5 (Figure 2).

TEM observation revealed that the Ta₂O₅ powders consisted of well-dispersed primary particles of submicrometer size (Figure 3a) and that each particle produced a sharp SAED (selected area electron diffraction) pattern, indicating high crystallinity (Figure 4a).

^{*} Corresponding author. E-mail: kdomen@res.titech.ac.jp.

 [†] Japan Science and Technology.
 [‡] Tokyo Institute of Technology.

Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.;
 Domen, K. *Chem. Commun.* 2002, 1698.

⁽²⁾ Hitoki, G.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. *Chem. Lett.* **2002**, *7*, 736.

⁽³⁾ Hara, M., Hitoki, G., Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. Catal. Today 2003, 78, 555.

⁽⁴⁾ Brauer, G.; Weidlein, J. R. Angew. Chem. 1965, 77, 913.

⁽⁵⁾ Brauer, G.; Weidlein, J. R.; Straehle, J. Z. Anorg. Allg. Chem. 1966, 348, 298.

⁽⁶⁾ Swisher, J. H.: Read, M. H. Metall. Trans. 1972, 3, 489.

⁽⁷⁾ Orhan, E.; Tessier, F.; Marchand, R. Solid State Sci. 2002, 4, 1071.

 ⁽⁸⁾ Brauer, G.; Weidlein, J. R. Angew. Chem. **1965**, 77, 218.
 (9) Armytage, B.; Fender, B. E. F. Acta Crystallogr. B **1974**, 30,

^{809.}

⁽¹⁰⁾ Strähle, J. Z. Anorg. Allg. Chem. 1973, 402, 47.

TaON Ta3N5 Figure 1. Schematic structures of Ta₂O₅, TaON, and Ta₃N₅.

Figure 2. X-ray diffraction patterns of Ta₂O₅, TaON, and Ta₃N₅.

After nitridation of Ta₂O₅ to TaON, many pores of 10-20 nm in size emerged within the particles (Figure 3b). Similar pore formation was also observed for Ta₃N₅ (Figure 3c). The apparent particle size of the primary particles of Ta₂O₅ was maintained after nitridation to TaON or Ta₃N₅. However, the BET surface area was increased from 1.8 m^2/g for Ta₂O₅ to 6.5 m^2/g for TaON and 11.4 m^2/g for Ta₃N₅, attributable to the emergence of pores in the nitriding process.

During nitridation, substitution of N³⁻ for O²⁻ takes place while maintaining the valence state of Ta^{5+} . As three O^{2-} anions would be replaced by two N^{3-} anions, it seems reasonable for the primary particles of Ta_2O_5 to become porous given that the apparent size of primary particles remained unchanged after nitridation.

Figure 4c,e shows examples of TaON and Ta₃N₅ particles along with SAED patterns for the full samples. Surprisingly, these diffraction patterns exhibit sharp spots similar to that of the original Ta₂O₅ (inset of Figure 4a), indicating that the TaON and Ta₃N₅ particles are still single-crystalline primary particles. Highmagnification images of the TaON and Ta₃N₅ particles (Figure 4d,f) show that the fringe patterns run coherently across the pores, again confirming the singlecrystalline nature of these porous particles. After checking over 100 particles of TaON and Ta₃N₅, all particles appear to be single crystals similar to those shown in Figure 4c or 4e.

A solid-state transformation is pseudomorphic if the external geometry and size of the precursor are retained

Figure 3. TEM images of (a) Ta₂O₅, (b) TaON, and (c) Ta₃N₅.

in the product. When the solid product is formed in one or several crystallographically equivalent orientations relative to the parent crystal as a consequence of a solidstate transformation, the process is called topotactic. A typical example of pseudomorphism and topotactism is the transformation of a MoO₃ platelet to a Mo₂N platelet by reaction with NH₃: the $\{100\}$ planes of Mo₂N are parallel to the $\{010\}$ planes of MoO₃.¹¹⁻¹³ The nitride Mo₂N product consists of 3–4-nm particles aggregated in a spongy relic of the parent crystals, in which the average pore size lies below 3 nm. It has also been known that the transformation of V2O5, MoO3, and Nb₂O₅ reacted with NH₃ to porous nitride VN,^{14,15}

- (12) Volpe, L.; Boudart, M. J. Solid State Chem. 1985, 59, 332.
 (13) Li, S.; Kim, W. B.; Lee, J. S. Chem. Mater. 1998, 10, 1853.
 (14) Oyama. S. T.; Kapoor, R.; Oyama, H. T.; Hofmann, D. J.; Matijević, E. J. Mater. Res. 1993, 8, 1450.
 (15) Kwon, H.; Choi, S.; Thompson, L. T. J. Catal. 1999, 184, 236.

⁽¹¹⁾ Volpe, L.; Oyama, S. T.; Boudart, M. Stud. Surf. Sci. Catal. 1983, 16, 147.

Figure 4. TEM images of (a) single-crystal Ta₂O₅ particle viewed along the [010] direction with diffraction pattern inset and (b) a high-magnification image of a part of (a); (c) singlecrystal TaON particle viewed along the [111] direction with diffraction pattern inset and (d) a pore in (c); and (e) singlecrystal Ta₃N₅ particle viewed along the [100] direction with diffraction pattern inset and (f) a pore in (e).

MoO_xN_y,¹⁶ NbN,¹⁷ and NbO_xN_y,^{18,19} respectively, is pseudomorphous and topotactic.

In this experiment, the morphologies between the parent Ta₂O₅ particles and the product TaON or Ta₃N₅ particles are identical, and each particle of the three materials is single crystalline. It can be suggested that the solid-state transformation of Ta₂O₅ by reaction with NH₃ to either TaON or Ta₃N₅ is pseudomorphic and

topotactic. Because all particles of these three materials have a spherical habit, the crystalline orientation relationship between the precursor and product is not clear.

The porous Mo₂N platelets prepared from the transformation of MoO₃ consist of nanoparticles, and the platelets are regarded as single crystals from the SAED pattern in that most nanoparticles take the same crystalline orientation.¹¹ The pores in the platelets can be considered to be formed by the intervals of the nanoparticles. It is interesting to find that the porous TaON and Ta₃N₅ particles prepared in our experiment are different from those porous Mo₂N platelets. From the bright images and corresponding SAED patterns of TaON and Ta_3N_5 particles (Figure 4), it is clear that each single-crystalline particle of TaON and Ta₃N₅ is one particle rather than consisting of smaller nanoparticles. The pores in the TaON and Ta₃N₅ particles were caused by the voids that appeared in the nitridation process, which link to each other to form larger worm-hole-like pores, rather than being formed by the aggregation of nanoparticles.

A similar material consisting of mesoporous singlecrystal particles of a Nb-Ta mixed oxide was recently prepared by the present authors.^{20,21} However, that material was prepared by a very different process, involving the crystallization of an amorphous mesoporous precursor. To the best of the authors' knowledge, this is the first report of the formation of porous singlecrystalline TaON and Ta₃N₅ particles from a pseudomorphous and topotactic transformation of Ta₂O₅ reacted with NH₃. For photocatalytic applications, this kind of well-crystallized and well-dispersed material is expected to achieve even higher QE for water oxidation under visible-light irradiation.

In conclusion, we have observed that the solid-state transformation of Ta₂O₅ reacted with NH₃ to TaON as well as Ta₃N₅ is pseudomorphous and topotactic. The single-crystalline particles of TaON and Ta₃N₅ were formed from the single-crystalline Ta₂O₅ particles. Each single-crystalline particle of TaON and Ta₃N₅ was one particle, not formed by the aggregation of nanoparticles. The worm-hole-like pores appeared in these particles during the nitridation process.

Acknowledgment. This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology (JST) Corporation and the 21st Century Center of Excellence (COE) program of the Ministry of Education, Science, Sports and Culture of Japan.

CM0347887

⁽¹⁶⁾ Kim, H. S.; Sayag, C.; Bugli, G.; Djéga-Mariadassou, G.; Boudart, M. *Proc. Mater. Res. Soc. Symp.* **1994**, *368*, 3. (17) Oyama, S. T.; Schlatter, J. C.; Metcalfe, J. E.; Lambert, J. M.,

Jr. Ind. Eng. Chem. Res. 1988, 27, 1639.

⁽¹⁸⁾ Kim, H. S.; Shin, C. H.; Bugli, G.; Bureau-Tardy, M.; Djega-Mariadassou, G. Appl. Catal. A 1994, 119, 223.
 (19) Schwartz, V.; Oyama, S. T. Chem. Mater. 1997, 9, 3052.

⁽²⁰⁾ Lee, B.; Lu, D.; Kondo, J. N.; Domen, K. Chem. Commun. 2001, 2118.

⁽²¹⁾ Lee, B.; Yamashita, T.; Lu, D.; Kondo, J. N.; Domen, K. Chem. Mater. 2002, 14, 867.